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NAVIER-STOKES EQUATIONS 

It was shown that Euler equations for inviscid fluids can be derived using either the Reynolds 

transport theorem or Newton’s law of motion. For viscous fluids, the momentum equations can 

similarly be derived with an additional consideration of the shear stresses due to fluid viscosity. 

 

In 1822, Claude-Louis Navier, a French scientist, derived momentum equations of fluids using 

the molecular theory of attraction and repulsion between neighboring molecules However, 

Navier could not explain the diffusion terms related to the fluid viscosity clearly. Later, in 1845, 

an Irish mathematician George Gabriel Stokes derived the same equations and explained that the 

diffusion terms are included due to the fluid viscosity. This is why we named two scholars for the 

momentum equations for viscous fluids. 

 

The Navier-Stokes equations in the vector form are given by 
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
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       (1) 

0V             (2) 

which is for incompressible fluids. The Navier-Stokes equations probably contain all of 

turbulence. Yet it would be foolish to try to guess what it consequences are without looking at 

experimental facts. The phenomena are almost varied as in the realm of life (Frisch, 1995). 
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1. Stress Tensor 

A commonly-used tensor notion is given by 

 

 

In other words, the first subscript denotes the direction of normal, and the second does the 

direction of action. 

As seen in the figure below, for cubic element, there are 9 stresses, which are expressed by stress 

tensor ij  such as 

xx xy xz

ij yz yy yz

zx zy zz

  
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  
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        (3) 

(Q) Prove that the stress tensor is symmetric about diagonal. That is, 

 xy yx  ,     yz zy  ,  and  zx xz   

First Face ; Second Stress direction ij
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Figure 1. Stresses acting on a fluid element 

 

2. The Navier-Stokes Equations 

2.1 Force Balance 

Consider the momentum balance of the cubic fluid element given below. If the fluid viscosity is 

considered, then the shear stress should be included in addition to the normal stresses or pressure 

we considered in the derivation of the Euler equations. Then, the external forces in the x –

direction are given by 

 xF yxx
x x yx yxx y z y x z
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where fi is the body force component (per unit mass) in the i-th direction. The acceleration term 

is expressed as 

 xa
Du

m dxdydz
Dt

           (5) 

Therefore, in the x-direction, we have 

yxx zx
x

Du
f

Dt x y z

  
  

       
                     (6a) 

Similarly, in the y- and z-directions, the momentum equations are given by     

xy y yz
y

Dv
f

Dt x y z

  
 

   
       

      (6b) 

yzxz z
z

Dw
f

Dt x y z

  
  

       
      (6c) 

Note that, if the fluid is frictionless, all shear stresses vanish and only normal stresses remain in 

the equations. That is, 

 0xy yz zx      

x y z p       
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Figure 2. Deformation of a fluid element 

 

2.2 Analysis of the Motion of a Fluid Element 

(1) Shear Stress 

The velocity components at points A and B are, respectively, 

A

u
u u x

x
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 
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   and  A

v
v v x

x
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B

u
u u y

y
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 


   and  B

v
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y

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At the point A, the distance traveled in the y-direction during dt is 

v
v x v t

x
           

 

which results in the angle of 1 /d x   . Then, the angular velocity of dx element is (positive 
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angular velocity is defined in the counterclockwise direction) 

      1
1

1
v

x t
d vx
dt t x x

 
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 

 
      




 

Similarly, the angular velocity of y  element is 2 / .u y  

  The angular deformation or 

strain rate ( ij ) is defined as the average of the difference in angular velocities of two originally 

perpendicular elements, i.e., /xy d dt  . Here,   1 21/ 2d d d     . So the rate at which 

a is changing (rate of angular deformation) is 

1 2

1 1

2 2xy

v u

x y
  

             

 
 

Therefore, we have such shear stress component in the x-y plane as 

xy

v u

x y
 

  
    

         (7a) 

Generally, the shear stress components can be related to the velocity gradients by 

yz zy

w v

y z
  

  
     

        (7b) 

zx xz

u w

z x
          

        (7c) 

(2) Normal Stress 

In a viscous incompressible fluid, the normal stresses are the sum of the pressure force and a 
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viscous force proportional to the coefficients of linear deformation: 

xx xp a   


         (8) 

where “a” represents a physical constant of a fluid medium and x


 is the rate of elongation in 

the x-direction suffered by the fluid element. Stokes discovered that 2a   . It is easy to deduce 

that /x u x   


 from the fact that 

u
du dx

x

    
         (9) 

which leads to   V


. Thus, Eq.(8) can be cast in the following form: 

2xx

u
p

x
  

  


         (10) 

However, in case of a viscous compressible fluid, the shear stresses remain the same, but the 

normal forces have to take into account the change of volume of the fluid particle. That is, 

      2x

u v w u
p

x y z x
  

    
          

       (11) 

in which   is a second coefficient of viscosity for a gas. From the kinetic theory of gases, it can 

be shown for a monoatomic gas that 

3 2 0             (12) 

which is called Stokes’ relation. In practice this relationship is accurate enough for any kind of 
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gas. Thus, Eq.(11) can be rewritten and equations for y- and z-directions can be deduced as 

2
2

3x

u v w u
p

x y z x
  

    
          

      (13a) 
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2
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p

x y z y
  

    
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      (13b) 
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2

3z

u v w w
p

x y z z
  

    
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      (13c) 

If one adds the above three equations, he has 

 3 2 2 3x y z p V V p               
 

 

Therefore, we have 

  1

3 x y zp        

The shear and normal stress components can be presented in the compact tensor notation by 

2

3
ji k

ij ij ij
j i k

uu u
p

x x x
   

  
         

 ( , , 1,2,3)i j k      (14) 

 

(3) Momentum Equations 

Thus we have the Navier-Stokes equations for compressible fluids such as 
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21

3x

Du p v u v w
f v u

Dt x x x y z
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     (15a) 
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Dw p v u v w
f v w

Dt z z x y z
     
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     (15c) 

For incompressible fluids, the Navier-Stokes equations are 

21
x

Du p
f v u

Dt x


   


        (16a) 

21
y

Dv p
f v v

Dt y


   


        (16b) 

21
z

Dw p
f v w

Dt z


   


        (16c) 

 

The Navier-Stokes equations enable engineers to analyze both laminar and turbulent flows. 

However, a fully deterministic approach is no longer possible in the case of turbulent motion 

because of the random nature of turbulence. Furthermore, in engineering practice, it is not 

always necessary to know the exact fine structure of the flow. This is why so many mathematical 

models averaged over time and space are preferred by engineers. Only the average values and the 

overall and statistical effects of turbulent fluctuations have to be studied.  
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(Q) Average the Navier-Stokes equations over turbulence and obtain the Reynolds equations. 

Explain the role of the Reynolds stress terms clearly. 

 

2.3 Concluding Remarks 

For more than 50 years it has been recognized that our understanding of turbulent flows is very 

incomplete. A quotation attributed to Sir Horace Lamb in 1932 might still be appropriate: 

“I am an old man now, and when I die and go to Heaven there are two matters on which I hope 

for enlightenment. One is electrodynamics and the other is the turbulent motion of fluids. And 

about the former I am rather optimistic.” 

 

The fundamental equations of fluid dynamics are based on the following universal laws: 

(1) conservation of mass 

(2) conservation of momentum 

(3) conservation of energy (1st law of thermodynamics) 

In addition to these universal laws, it is necessary to establish relationships between fluid 

properties in order to close the system of equations. An example of such a relationship is the 

equation of state which relates the thermodynamic variables pressure, density, and temperature. 
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For incompressible fluids, the Navier-Stokes equations together with the continuity equation 

constitute four equations. Theoretically these equations may be solved because the number of 

unknowns are four (uj and p). However, it should be remembered that the flow variables in the 

set of equations are instantaneous ones including chaotic effects, which are not of interest to 

many engineers. Furthermore, we have the following computational difficulty: 

The exact equations describing the turbulent motion are known (the Navier-Stokes equations), 

and numerical procedures are available to solve these equations, but the storage capacity and 

speed of present computers is still not sufficient to allow a solution for any practically relevant 

turbulent flow. The reason is that the turbulent motion contains elements which are much smaller 

than the extent of the flow domain, typically of the order of 10-3 times smaller. To resolve the 

motion of these elements in a numerical procedure, the mesh size of the numerical grid would 

have to be even smaller; therefore at least 109 grid points would be necessary to cover the flow 

domain in three dimensions. 

 

For compressible fluids (without external heat addition or body forces), three more dependent 

variables should be added to four for incompressible fluids. That is, they are the fluid density 

(  ), internal energy per unit mass (e), and temperature (T). Therefore, two more equations are 

needed to close the system together with the continuity equation, three momentum equations, 

and energy equation. Generally, the two state equations such as  ,p p e   and  ,T T e   
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are employed. Examples of state equations are 

 p RT  

 ve c T  

where R is the gas constant and vc  is the specific heat of constant volume which is a function of 

R. The former is the equation of state for perfect gas, whose inter-molecular forces are 

negligible.  
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Problems 

1. Parallel flow through a straight channel 

Consider 2D flow depicted in the figure below. For steady, incompressible flow, the continuity 
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and momentum equations are given by, respectively, 

0
u v

x y

 
 

 
        

2 2

2 2

1u u p u u
u v v

x y x x y
     

          
  

2 2

2 2

1v v p v v
u v v

x y y x y
     

          
      

Solve these equations analytically with appropriate boundary conditions. 

 

 

2. Couette flow 

Consider the flow between two parallel infinite plates. The upper plate is moving at a velocity U. 

The flow is two-dimensional, steady, incompressible.  

(1) Obtain the governing equation(s). 
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(2) Give the proper boundary conditions for the governing equation(s). 

(3) Solve these analytically. 

 

 

 


